КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

- то же, что комплексные соединения.

Смотреть больше слов в «Большом энциклопедическом словаре»

КООРДИНАЦИЯ →← КООРДИНАЦИОННОЕ ЧИСЛО

Смотреть что такое КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ в других словарях:

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

(комплексные соед.), содержат катионный, анионный или нейтральный комплекс, состоящий из центр. атома (или иона) и связанных с ним молекул или ионов - <i> лигандов</i>.<i></i> Центр. атом (комплексообразователь) - обычно акцептор, а лиганды - доноры электронов, и при образовании комплекса между ними возникает донорно-акцепторная, или координационная, связь. Комплекс м. б. электронейтральным, или неэлектролитом, иметь положит. заряд (комплексный катион) или отрицательный (комплексный анион). В случае образования К. с. с одноименными лигандами все связи в комплексе равноценны, если он находится в р-ре или газовой фазе, а в случае разнородных лигандов характер связи зависит от их св-в, напр. в комплексе [W(CH<sub>3</sub>CN)(O)F<sub>4</sub>] реализуются донорно-акцепторная, ковалентные простые и кратная связи: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/0f81f1eb-bdde-4fd4-b78c-8a4e5f7e9655" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №1" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №1"> <br> Число атомов лигандов, координированных центр. атомом, - <i> координационное число</i> (к. ч.) - обычно превышает его степень окисления. Лиганды, связанные с центр. атомом, образуют внутр. координац. сферу комплексного соединения. В р-ре комплекс сохраняет индивидуальность, хотя может иметь место и диссоциация: <br> [P(CH<sub>3</sub>CN)F<sub>5</sub>]DPF<sub>5</sub>+CH<sub>3</sub>CN [Cu(en)<sub>3</sub>]<sup>2+</sup>D[Cu(en)<sub>2</sub>]<sup>2+</sup>+en <br> (en - этилендиамин). Анионы или катионы (противоионы), входящие вместе с комплексом в состав К. с., образуют вторую (внешнюю) сферу. В зависимости от числа донорных атомов лиганда, способных к координации, различают моно-, би- и ... полидентатные лиганды. Лиганды, координирующиеся через два или более донорных атомов к одному центр. атому, наз. хелатными, а координирующиеся к разл. центр. ионам,-мостиковыми.Комплексы, в к-рых лиганды связывают два или более центр. ионов, наз. би- или полиядерными (многоядерными, см. <i>Полиядерные соединения</i>).<i></i> Полиядерные комплексы, имеющие хим. связи между центр. атомами, наз. <i> кластерами.</i> Одни и те же лиганды, напр. Ph<sub>2</sub>P(O)CH<sub>2</sub>P(O)Ph<sub>2</sub>, в зависимости от условий могут выступать в роли монодентатных, хелатных и мостиковых (ф-лы I-III соотв.). <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/670ce38c-6a7f-4a3b-9d60-8accd9a8ce1b" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №2" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №2"> <br> Одноатомные лиганды, напр. F<sup>-</sup>, также могут выступать в качестве мостиковых: [F<sub>5</sub>TaЧFЧTaF<sub>5</sub>]<sup>-</sup>. К. с., содержащие циклич. комплексы металлов с полидентатными лигандами, в к-рых центр. атом входит в один или неск. циклов, наз. <i> хелатами</i> (напр., IV). <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/5b908ad8-1c6d-4dde-ae01-20e84dac2627" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №3" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №3"> <br> Номенклатура К. с. Назв. комплексного катиона записывают одним словом, начало к-рого составляет назв. отрицат. лигандов с прибавлением соединит. гласной "о", затем перечисляют нейтральные лиганды, именуемые как своб. молекулы, за исключением Н <sub>2</sub> О - аква, МН <sub>3 </sub>- аммин, СО - карбонил, NO - нитрозил, CS - тиокарбонил, затем называют центр. атом с послед. римской цифрой, указывающей его степень окисления. Число лигандов, назв. к-рых являются простыми словами, напр. "хлоро", "бромо", "аква", "оксалато", обозначают префиксами "ди", "три", "тстра" и т. д. Если назв. лигандов более сложны, напр. этилендиамин, триалкилфосфин, перед ними ставят префиксы <i>"бис", "трис", "тетракис"</i> и т. д., напр. [Co(NH<sub>3</sub>)<sub>4</sub>(NO<sub>2</sub>)Cl]NO<sub>3 </sub> нитрат хлоронитротетрамминкобальта (III). Комплексные анионы называют согласно тем же правилам, но с добавлением суффикса "ат" к названию комплексообразователя, напр. К[Рt(НН <sub>3</sub> )Сl<sub>3</sub>] - трихлороамминплатинат (III) калия. Нейтральные К. с. обозначают одним словом, образованным по тем же правилам, напр. [Pt(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] - дихлоро-<i> бис</i> -(трифенилфосфин) платина (II). Перед назв. мостиковых лигандов ставят префикс m-, а перед ненасыщенными - префикс h-(см. <i> Гапто-</i>),<i></i> причем, когда все атомы лиганда связаны с центр. атомом, цифровой индекс у h не ставят, напр. m-дихлоро-<i> бис</i>-(h-аллил) дипалладий(II) (ф-ла V). <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/b046b444-df5f-4f0b-b391-0a7cbf455654" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №4" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №4"> <br> Формулы К. с. При написании ф-лы внутр. сферы К. с., содержащей один вид лигандов L, вначале записывают центр. атом М, а затем лиганды с указанием их числа n; всю внутр. сферу заключают в квадратные скобки. Внешнесферные катионы X (также с указанием их числа m) помещают слева от внутр. сферы, а внешнесферные анионы Y - справа: X<sub>m</sub>[ML<sub>n</sub>], [ML<sub>n</sub>]Y<sub>m</sub>. Разные по типу заряда лиганды располагают вслед, порядке: [M(L<sup>+</sup>)(L°)(L<sup>-</sup>)]. При наличии неск. разных лигандов их отделяют друг от друга круглыми скобками, напр. запись (N<sub>2</sub>) соответствует одному лиганду диазоту, а запись (N)<sub>2 </sub>- двум лигандам. <br> <b> Природа химической связи в К. с. </b> В К. с.-хотя бы одна из связей - донорно-акцепторная, образуется в результате перекрывания заселенных электронами орбиталей лигандов с вакантными орбиталями центр. атома (см. <i> Координационная связь</i>).<i></i> Если лиганд, как, напр., ОН <sup>-</sup>, OR<sup>-</sup>, NR<sup>-</sup><sub>2</sub>, SR<sup>-</sup>, O<sup>2-</sup>, S<sup>2-</sup>, NR<sup>2-</sup>, имеет дополнит. неподеленные пары электронов, а центр. атом - подходящие вакантные орбитали, то образуются простые дативные связи. Лиганды, у к-рых есть вакантные орбитали (как, напр., у PR<sub>3</sub>, SR<sub>2</sub>, AsR<sub>3</sub>) с центр. атомами, имеющими d-электроны, могут образовывать обратные дативные связи p-типа. Оба эффекта приводят к упрочению координац. связи, увеличивая ее кратность. Природу хим. связи в К. с. объясняют с помощью <i> валентных связей метода,</i> электростатич. теории и ее модифнкации <i> - кристаллического поля теории, молекулярных орбиталей методов.</i> <br> <b> Строение К. с. </b> В пространстве К. с. имеют форму многогранников - <i> координационных полиэдров,</i> в вершинах к-рых располагаются атомы лигандов, непосредственно связанные с центр. атомом, или неподеленные электронные пары последнего. Комплексы с к. ч. 2, напр. [CuCl<sub>2</sub>]<sup>-</sup>, [Ag(CN)<sub>2</sub>]<sup>-</sup>, имеют линейное строение, для к. ч. 3 возможно строение плоского равностороннего треугольника, как, напр., [HgI<sub>3</sub>]<sup>- </sup> (ф-ла VI) или [Pd(PPh<sub>3</sub>)<sub>3</sub>], или тригональной пирамиды. В <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/f5582bfa-0f8a-46f6-be9f-0e7d3631394e" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №5" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №5"> <br> случае к. ч. 4 наиб. часто встречаются конфигурации плоского квадрата, напр. [Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (VII), или тетраэдра, напр. [BF<sub>4</sub>]<sup>-</sup>, [BeF<sub>4</sub>]<sup>2-</sup> (VIII). Для к. ч. 5 координац. полиэдрыквадратная пирамида, напр. [Ni(PR<sub>3</sub>)<sub>2</sub>Br<sub>3</sub>] (IX), или тригональная бипирамида, напр. [Fe(CO)<sub>5</sub>] (X). При к. ч. 6 координац. полиэдр обычно октаэдр, напр. [PF<sub>6</sub>]<sup>-</sup> (XI), [PtCl<sub>6</sub>]<sup>2-</sup>, однако иногда встречается и конфигурация тригональной призмы. Для к. ч. 7 известны конфигурации пентагональной бипирамиды, напр. [ZrF<sub>7</sub>]<sup>3-</sup>, [UF<sub>7</sub>]<sup>3-</sup> (XII), гранецентрир. тетрагональной призмы, напр. [NbF<sub>7</sub>]<sup>2-</sup>, или др. В случае к. ч. 8 координац. полиэдры - квадратная антипризма, напр. [TaF<sub>8</sub>]<sup>3-</sup> (XIII), или додекаэдр, напр. [Mo(CN)<sub>8</sub>]<sup>4-</sup>. Для к. ч. 9 наблюдается конфигурация гранецентрир. тригональной призмы, к-рая наиб. широко известна для аквакомплексов лантаноидов, напр. [Nd(H<sub>2</sub>O)<sub>9</sub>]<sup>3+</sup>. В случае к. ч. 10 обнаружены конфигурации додекаэдра с раздвоенными вершинами для [Nd(Me<sub>2</sub>SO<sub>4</sub>)<sub>4</sub>(NO<sub>3</sub>)<sub>3</sub>] и двушапочной антипризмы для {[Th(H<sub>2</sub>O)<sub>2</sub>(HCOO)<sub>4</sub>]<sup>.</sup>H<sub>2</sub>O}. Для предсказания конфигурации координац. полиэдра м. б. использована теория отталкивания электронных пар валентной оболочкой, согласно к-рой конфигурация комплекса определяется миним. отталкиванием всех электронных пар валентной оболочки центр. атома (см. <i>Гиллеспи теория</i>). <br> <b> Изомерия К. с. </b> Различают истинно изомерию комплексов, при к-рой состав внутр. сферы и строение координир. лигандов не меняется (геом., оптич., конформац., связевая), и изомерию с изменением состава координац. сферы или строения лигандов (ионизац., гидратная, координац., лигандная, формальная). Геометрическая (пространственная) изомерия является следствием разл. расположения разнородных лигандов во внутр. сфере комплексов. Возможна в случае к. ч. 4 (только для плоских квадратных комплексов) и более высоких к. ч. Ниже приведены примеры геом. изомеров. <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/c589bb53-011e-45ca-bd65-529b09826700" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №6" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №6"> <br> Оптическая изомерия. Простейший пример оптически активного комплекса - тетраэдрич. структура, в к-рой центр. атом окружен четырьмя разл. лигандами или двумя несимметричными бидентатными лигандами. В случае октаэдрич. конфигурации оптич. изомеры образуют комплексы типа М(АА)<sub>3</sub> с симметричными бидентатными лигандами, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/d96275d0-92ba-40ec-ad28-b0b871199702" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №7" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №7"> <br> Для комплексов типа М(АА)<sub>2</sub> В <sub>2</sub> оптич. изомеры дают только <i> цис</i> -формы, поскольку <i> транс-</i> форма имеет плоскость симметрии, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/df2ec40a-c19e-431c-8946-712ecfd9789d" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №8" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №8"> <br> В случае октаэдрич. комплекса с 6 разнородными лигандами каждый из 15 возможных изомеров давал бы оптич. изомеры, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/25f0d470-6bef-4c32-b414-e6205ebbe117" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №9" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №9"> <br> Конформационная изомерия - способность комплексов изменять форму координац. полиэдра, напр. переходить из плоской квадратной конфигурации в тетраэдрическую: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/3eac2f54-c048-48e8-8ff3-9b6d9fad1083" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №10" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №10"> <br> В случае связевой изомерии изменяется способ связывания монодентатно координир. лиганда, имеющего два или более неэквивалентных донорных центра, во внутр. сфере комплекса при сохранении строения лиганда. Напр., ион NCS<sup>-</sup> может координироваться через атомы N или S, NO<sub>2</sub><sup>- </sup>- через атомы N и О, Ph<sub>2</sub>P(O)CH<sub>2</sub>C(O)NR<sub>2 </sub>- через группы Р=О или С=О, R<sub>2</sub>N(СН <sub>2</sub>)<sub>n</sub>NR<i>'</i><sub>2 </sub>- через oдин из неэквивалентных атомов N и т. д. Лигандная изомерия обусловлена существованием комплексов с изомерными формами лиганда. Координационная изомерия заключается в полном или частичном изменении состава комплексных аниона или катиона при сохранении состава К. с., напр.: <br> [Co(NH<sub>3</sub>)<sub>6</sub>][Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>] и [Cr(NH<sub>3</sub>)<sub>6</sub>][Co(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>] <br> В случае би- или полиядерных комплексов выделяют координац. изомерию положения - изменение состава координац. сфер отдельных центр. ионов при сохранении состава комплекса, напр. соед. XIV и XV. <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/5d45736d-8d4d-460a-b439-bd012e6c413b" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №11" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №11"> <br> Ионизационная изомерия - способность К. с. одного состава давать в р-ре разл. ионы. Примеры ионизац. изомеров: [Pt(NH<sub>3</sub>)<sub>3</sub>Br]NO<sub>2</sub> и [Pt(NH<sub>3</sub>)<sub>3</sub>(NO<sub>2</sub>)]Вr. Частный случай ионизац. изомерии - сольватная (гидратная) изомерия. Примеры гидратных изомеров - [Сr(Н <sub>2</sub> О)<sub>6</sub>]Сl<sub>3</sub>, [Сr(Н <sub>2</sub>O)<sub>5</sub> Сl]Сl<sub>2</sub> Н <sub>2</sub>O, [Сr(Н <sub>2</sub>O)<sub>4</sub> Сl<sub>2</sub>]Сl 2Н <sub>2</sub>O. Формальные изомеры - К. с. одинакового состава и мол. веса, но отличающиеся по составу лигандов, напр.: [Pt(NH<sub>3</sub>)(NH<sub>2</sub>C<sub>2</sub>H<sub>5</sub>)Cl<sub>2</sub>] и [Pt(NH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>]. Стабильность комплексов. Образование и диссоциация К. с. происходит ступенчато: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/7a5443c4-2698-4137-a7f0-3650c7d1eae7" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №12" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №12"> <br> Константы К <sub>1</sub> К <sub>2</sub>, ... ,К <sub>n</sub><i></i> наз. ступенчатыми константами образования (устойчивости). Для обозначения полных констант образования используют символ b: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/02f22970-c309-4e16-bd68-33b89127edaa" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №13" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №13"> <br> При этом b<sub>n</sub> является произведением ступенчатых констант: b<sub>n</sub>=К <sub>1</sub> К <sub>2</sub>...К <sub>n</sub>,<i></i> Константы К <sub>n</sub><i></i> и b<sub>n </sub>- термодинамич. характеристики устойчивости комплекса в р-ре. Величины, обратные К <sub>n</sub> или b<sub>n</sub>, наз. константами диссоциации или нестойкости. Различают термодинамич. стабильность К. с. - меру возможности образования комплекса или его превращения в др. соед. в равновесных условиях-и кинетическую, описывающую скорость р-ций комплексов, ведущих к достижению равновесия. Термодинамич. стабильность комплекса характеризуется терминами "устойчивый", "неустойчивый", кинетическая - терминами "лабильный" и "инертный". Если при комнатной т-ре р-ция комплекса протекает за время смешения реагентов (ок. 1 мин), комплекс относят к лабильным, если р-ция протекает с измеримой скоростью и половина времени жизни комплекса более двух мин, такие комплексы наз. инертными. Напр., константа скорости изотопного обмена молекул воды во внутр. координац. сфере для инертного комплекса [Ni(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> равна 3,3<sup>.</sup>10<sup>4</sup> с <sup>-1</sup>, а для лабильного [Сr(Н <sub>2</sub> О)<sub>6</sub>]<sup>3+</sup>-5<sup>.</sup>10<sup>-7</sup> с <sup>-1</sup>. Устойчивость комплексов определяется природой центр. атома и лиганда и стерич. факторами. В соответствии с теорией "жестких" и "мягких" к-т и оснований все центр. атомы м. б. условно разделены на два класса: жесткие к-ты Льюиса и мягкие к-ты Льюиса. Первые имеют малый атомный или ионный радиус и высокую положит. степень окисления, предпочтительно взаимод. с неполяризующимися жесткими основаниями, такими как F<sup>-</sup>, ОН <sup>-</sup>, NR<sup>-</sup><sub>2</sub>. К-ты второго класса имеют большой атомный или ионный радиус и низкую степень окисления, более эффективно взаимод. с легко поляризующимися мягкими лигандами, такими как SR<sub>2</sub>, PR<sub>3</sub>, I<sup>-</sup>, олефины. К жестким к-там Льюиса относятся центр. ионы элементов в высших степенях окисления, с электронной конфигурацией d<sup>o</sup><i></i> или d<sup>10</sup>.Мягкие к-ты Льюиса имеют электроны на d-орбиталях, способные к образованию p - связей в результате перекрывания с вакантными d-орбиталями мягких лигандов. Эти же центр. ионы образуют комплексы с олефинами типа соли Цейзе (ф-ла XVI). Поскольку р-ции комплексообразования подразумевают взаимод. к-т и оснований Льюиса, с увеличением основных св-в лигандов устойчивость комплексов повышается. Напр., в рядах доноров R<sub>3</sub>PO более сильные по основности лиганды при введении в р-р полностью замещают более слабые во внутр. сфере <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/d1616c1b-0086-4bd8-b3fd-a9ea96ee1987" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №14" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №14"> <br> лабильных комплексов [M(OPR<sub>3</sub>)F<sub>5</sub>], где M-Nb(V), Ta(V). Комплексы хелатообразующих реагентов по сравнению с комплексами их монодентатных аналогов обладают повыш. устойчивостью (т. наз. хелатный эффект), напр. комплексы этилендиамина устойчивее, чем аммиака, причем устойчивость хелатного цикла зависит от числа атомов в нем. Для лигандов, сравнимых по основности, повышение двоесвязности в хелатном цикле приводит к повышению стабильности комплекса, напр. комплексы ацетилацетоната Си (XVII) более стабильны, чем комплексы Сu с салициловым альдегидом (XVIII). Присоединение объемного заместителя к донорному атому или вблизи него, напр. замена атома Н на алкильную группу, приводит под влиянием стерич. факторов к уменьшению стабильности комплекса, напротив, введение алкильных групп в др. положения, вследствие увеличения основности лигандов, повышает стабильность комплексов. Стерич. эффекты благоприятствуют образованию <i> транс</i> -изомеров. <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/eb20440e-858e-4b21-a4c8-b9214edf7c65" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №15" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №15"> <br> На стабильность комплексов оказывает влияние и природа донорного атома лигандов. В случае "жестких" центр. атомов уменьшение размера донорного атома лиганда и повышение его электронной плотности приводит к увеличению стабильности комплексов, что находится в соответствии с усилением координац. связи согласно электростатич. теории, напр. стабильность галогенидных или халькогенидных комплексов падает в рядах F&gt;Сl&gt;Вr&gt;I или О&gt;S&gt;Se~Те. В случае мягких центр. ионов наблюдается обратная тенденция: F<cl> цис -влияние, <i> транс-</i> влияние) см. <i>Лигандов взаимное влияние</i>. Реакций К. с. 1. В р-циях замещения более основный лиганд замещает менее основный или одноименный, координированный центр. атомом. Эти р-ции относятся к <i> нуклеофильным реакциям.</i> При диосоциативном S<sub>N</sub>1 механизме замещение протекает через медленную стадию диссоциации исходного комплекса с уменьшением к. ч. и послед. быстрой координацией входящей группы, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/ac549bbd-acc9-4756-bb2b-178463a37658" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №16" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №16"> <br> В случае октаэдрич. комплексов диссоциативный механизм S<sub>N</sub>1<i></i> предполагает образование пентакоординац. интермедиата (промежут. соед.) тетрагонально-пирамидального или тригонально-бипирамидального строения. В случае ассоциативного S<sub>N</sub>2<i></i> механизма замещение протекает через медленную стадию образования интермедиата с увеличением к. ч. центр. иона, как, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/23a4bb6d-857a-4df4-9e76-9b0b78bd5f77" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №17" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №17"> <br> Для октаэдрич. комплексов полагают, что замещение по S<sub>N</sub>2<i></i> механизму может проходить с образованием гептакоординац. интермедиата в результате приближения входящей группы к положению, соседнему с положением уходящего лиганда (<i> циc</i> -атака), или к положению, противоположному положению уходящего лиганда (<i> транс</i> -атака): <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/3196a5ac-97ee-4bcc-804a-9f87bc648efd" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №18" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №18"> <br> 2. Р-ции перераспределения лигандов-один из осн. методов синтеза разнолигандных комплексов. Они могут протекать между одноименными или разноименными центр. атомами, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/4eefd311-d50c-49e2-9af4-96f5bdde49a6" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №19" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №19"> <br> Наряду с механизмами S<sub>N</sub>1<i></i> и S<sub>N</sub>2, для этих р-ций возможен четырехцентровый механизм, при к-ром два комплекса одновременно обмениваются лигандами: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/3bd52609-51ac-4719-9b85-5f8f09a0ad19" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №20" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №20"> <br> 3. Р-ции внутримол. обмена приводят к наблюдаемой спектроскопич. методами (напр., ЯМР) эквивалентности лигандов, занимающих стерически разл. положения во внутр. сфере К. с. Такие р-ции могут идти без разрыва связей лигандов с центр. ионом. С высокой скоростью протекают они в К. с., имеющих строение тригональной бипирамиды. Один из возможных механизмов - <i> псевдовращение,</i> в соответствии с к-рым происходит парный обмен экваториальных и апикальных лигандов без разрыва связей: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/73cbbfed-6349-4097-a726-02a28a2a63df" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №21" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №21"> <br> 4. Р-ции изомеризации комплексов с монодентатными лигандами, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/eec57163-f61c-479a-b857-44dcbb25d587" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №22" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №22"> <br> Такие р-ции могут протекать как по механизму S<sub>N</sub>1, так и без разрыва связей лигандов с центр. ионом, особенно в случае тригонально-бипирамидальных комплексов. Изомеризация октаэдрич. К. с. происходит внутри- и межмолекулярно. В случае комплексов с хелатными лигандами изомеризация протекает по внутримол. механизму S<sub>N</sub>1<i></i> с размыканием хелатного цикла и уменьшением к. ч. в интермедиате: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/59e11d08-179d-4117-9c91-d182299d4bad" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №23" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №23"> <br> 5. Р-ции координированных лигандов. а) Диссоциация лигандов - воды, спиртов, аминов и др., напр. обратимое превращение <i> аквакомплексов</i> в <i>гидроксокомплексы</i>: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/0f224e08-e8c0-4312-8907-391d08a28e64" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №24" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №24"> <br> В результате диссоциации координир. молекулы воды происходит изменение характера связи атома О с центр. ионом, что может приводить к перестройке координац. сферы: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/1eb57aaf-27c2-418c-9c5c-0b4872c8e44b" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №25" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №25"> <br> Диссоциация аква- и гидроксокомплексов может приводить к оляции - образованию полиядерных комплексов с мостиковыми атомами О или группами ОН: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/1dd844c0-ebce-4240-88b5-3713b9ebc810" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №26" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №26"> <br> б) Окисление донорных атомов лигандов. Мягкие основания, напр. R<sub>3</sub>PS, R<sub>3</sub>PSe, R<sub>3</sub>PTe, во внутр. сфере жестких к-т Льюиса, напр. NbF<sub>5</sub>, TaF<sub>5</sub>, могут взаимод. с О <sub>2</sub>, в результате чего донорным становится более жесткий атом О: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/fa66705c-46ab-453e-8c32-c61faea46eb3" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №27" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №27"> <br> в) Изомеризация лигандов. Во внутр. сфере жестких к-т Льюиса основания мягкого типа, напр. зфиры монотиофосфиновых или монотиофосфорных к-т, могут изомеризоваться, в результате чего донорным становится более жесткий атом О и стабильность комплекса повышается: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/e378be76-f2c1-40c4-91e7-78e8f4c979cb" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №28" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №28"> <br> Скорость изомеризации падает с увеличением длины радикала R. г) Р-ции присоединения и конденсации. В результате этих р-ций из координир. лигандов образуются новые лиганды, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/d5ae254a-4135-4465-8aa8-2ec59c8b8c70" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №29" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №29"> <br> д) Р-ции внедрения молекул типа СО, C<sub>2</sub>F<sub>4</sub>, SO<sub>2</sub>, CH<sub>3</sub>CN и т. д. в комплекс по связям лиганд - центр. ион приводят к образованию новых К. с., напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/29adda10-2b42-4e41-871a-17cc23ff9d0e" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №30" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №30"> <br> 6. Окислит.-восстановит. р-ции К. с. можно разделить на два типа: а) внешнесферные, в к-рых внутр. сфера не затрагивается и промежут. ассоциаты не образуются, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/d1885ea2-48d8-469a-b38e-39e18cfa1d05" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №31" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №31"> <br> б) внутрисферные, в к-рых центр. атомы комплексов, участвующих в р-ции, связываются мостиковым лигандом, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/f7f0da92-b42d-4bee-9cdc-a5020b8403ea" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №32" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №32"> <br> Для объяснения внешнесферного переноса электрона предложен туннельный механизм: перенос электрона может происходить на расстояниях, значительно больших, чем те, к-рые соответствуют столкновению комплексов. Если окислит. р-ция сопровождается повышением к. ч., ее наз. окислит. присоединением, обратные р-ции наз. восстановит. элиминированием: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/f4cc7ffe-aefd-41e5-bbeb-05043199b020" alt="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №33" align="absmiddle" class="responsive-img img-responsive" title="КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ фото №33"> <br> Применение. Образование К. с. используют в экстракционных и сорбционных процессах разделения и тонкой очистки редких, цветных и благородных металлов, в аналит. химии (см. <i> Комплексонометрия, Комплексом</i>).<i></i> К. с. применяют в качестве селективных катализаторов разл. процессов хим. и микробиол. пром-сти, для создания окислителей на основе фторидов галогенов и благородных газов, в качестве источников Н <sub>2</sub> и О <sub>2</sub> на основе гидридов и кислородсодержащих соед., в медицине, в т. ч. в терапии разл. видов опухолей, в качестве источников микроэлементов в животноводстве и с. х-ве, для получения тонких покрытий на разл. изделиях микроэлектроники и для придания антикоррозионных св-в и мех. прочности, и т. д. В живых организмах К. с. присутствуют в виде витаминов, комплексов нек-рых металлов (в частности, Fe, Cu, Mg, Mn, Мо, Со) с белками и др. в-вами. См. также <i> Аммины, Ацидокомплексы, Гетерополисоединения, Карбонилы металлов</i> и др. О p-комплексах см. <i> Металлоорганические соединения</i>. Первое К. с.-хлорид гексаамминокобальта (III) - было открыто в 1798 Б. М. Тассером. Начало развития химии К. с. было положено почти спустя столетие, когда в 1893 А. Вернер дал объяснение образования таких соед. на основе созданной им координац. теории. <i> Лит.</i>:<i></i> Басоло Ф., Джонсон Р., Химия координационных соединений, пер. с англ., М., 1966; Басоло Ф., Пирсон Р., Механизмы неорганических реакций, пер. с англ., М., 1971; Гринберг А. А., Введение в химию комплексных соединений, 4 изд., <i> Л.,</i>1971; Макаше" Ю. А., Замяткина В. М., Соединения в квадратных скобках, Л., 1976; Кукушкин Ю. Н., Химия координационных соединений, М., 1985; Берсукер И. Б., Электронное строение и свойства координационных соединений, 3 изд.,.Л., 1986; Кукушкин Ю. Н., Реакционная способность координационных соединений. Л., 1987. <i> Ю. А. Буслаев. Е. Г. Ильин.</i> <p><br></p> </cl>... смотреть

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ, то же, что комплексные соединения.

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ - то же, что комплексные соединения.

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ , то же, что комплексные соединения.

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ, то же, что комплексные соединения.

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

то же, что комплексные соединения.

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

тоже, что комплексные соединения.

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ МЕТАЛЛОВ

"...Координационные соединения металлов - это соединения, как заряженные, так и незаряженные, в которых металл связан с несколькими атомами (обычно с 2... смотреть

T: 193